Как получают топливо из водорослей. Производство биотоплива из водорослей, опилок и рапса

Водоросли - топливо будущего

Нефти на наш век хватит. И нефти, и газа, и другого топлива органического происхождения, может быть, ещё останется и нашим детишкам. Заглядывать в более далёкую перспективу разведки и добычи минерального топлива - дело пустое и неблагодарное, однако всё чаще аналитики оценивают вероятность доступности достаточных ресурсов нефти и газа более чем на 50 лет мизерными шансами.

ЭТБЭ,Этил-трет-бутиловый эфир, биотопливо, альтернативная энергия, жидкое биотопливо

Впрочем, человечество - на беду ли себе, на счастье ли, оказалось гибче, чем общество планеты Плюк. До тех пор, пока, кроме цветовой дифференциации штанов, спичек и минеральных ресурсов, на свете существуют деньги, что-нибудь да придумывает. Хотелось бы, конечно, надеяться, что развитие и внедрение альтернативных способов добычи энергии происходит по причине моральных соображений о будущем планеты, или, скажем, из-за возможного глобального катаклизма с потенциальным потеплением/похолоданием климата. Однако на мой взгляд, всё гораздо прозаичнее - люди "зашевелились" в поисках иных источников топлива только потому, что это становится выгодно.

Что, мрачновато и слишком пессимистично? Помилуйте, журналисты тоже люди и порой теряют веру в светлое начало человечества. Хорошо на эту тему в своё время высказался покойный Р. А. Хайнлайн в одной из лучших своих книг "Достаточно времени для любви, или жизни Лазаруса Лонга":

Никогда не апеллируй к лучшим качествам человека. Возможно, он ими не располагает. Надежней обращаться к его личному интересу.

А что, вполне жизненное наблюдение, особенно в свете нынешнего состояния дел со стремительным "осушением" мировых запасов энергоресурсов органического происхождения, бедственного состояния окружающей среды в целом, и "отсутствием спешки" при ратификации Киотского протокола рядом развитых стран в частности. И никакие уговоры экологов и увещевания гринписовцев до поры до времени не имели особого эффекта.

Но время пришло - цена нефти вплотную приблизилась к отметке $100 за баррель. Спору нет, этот магический уровень цены имеет огромнейший психологический потенциал, однако ценность его заключается в не менее важной экономической составляющей: при достижении уровня $100 цены минерального энергетического сырья открываются невостребованные возможности производства альтернативных видов топлива, которые доселе были попросту нерентабельны ввиду дороговизны. Повышение цены на нефть более чем в два раза за последние три года так или иначе должно было "вывести" в рентабельность ряд проектов, положенных ранее под сукно до лучших времён.

Вот, собственно говоря, практически добрались до темы сегодняшнего рассказа. Вряд ли ошибусь, если скажу, что большинство населения планеты интересуются ценами на нефть лишь в той связи, какую она имеет к ценам на топливо для транспорта - стоимость бензина и дизельного топлива на заправках интересует нас ежедневно и гораздо больше, чем любые макроэкономические показатели. Поэтому сегодня поговорим о новых разработках в области производства альтернативного топлива, главным образом, для автомобилей . Точнее, не обо всех возможных видах топлива - обзорно мы обязательно поговорим в одной из будущих публикаций. Но лишь об одной из разновидностей биотоплива, пока что добываемого экзотическим, но очень перспективным способом.

Из табуреток? Из опилок? Из водорослей!

Нефть - не единственное сырьё для получения высокооктановой органики для двигателя нашего автомобиля. В одной из наших предыдущих публикаций, посвящённых изменению мирового климата , мы уже анализировали различные способы получения альтернативной энергии подробнейшим образом. Разумеется, ветряк на автомобиль не поставишь, равно как ядерный или термоядерный реактор; аккумуляторы для работы в качестве источника энергии для двигателя автомобиля , значительно усовершенствованные в последнее время в плане ёмкости, всё же пока не дают идеального решения.

Раз уж природа, запасая на будущее ископаемые виды органики, не предусмотрела многочисленности людского племени и его алчности, придётся человечеству обратить свой взор на органику, растущую вокруг и самостоятельно придумывать способы создания горючки из подручных и, по возможности, возобновляемых источников.

Логичный выход на ближайшее время - поиски среди альтернативных способов синтеза высокооктановой органики, без применения истощающихся ископаемых ресурсов. Способов таких множество, один из наиболее популярных ввиду сравнительно низкой себестоимости производства - это получение спирта средствами возобновляемых природных ресурсов, сиречь, из биомассы с грядки. Получаемый таким способом спирт можно заливать в бак в чистом виде, можно для дополнительной экономии смешивать с продуктами перегонки нефти. Всё бы хорошо, да мест с подходящим климатом, где можно выращивать кукурузу да пшеницу для перегонки в спиртовое топливо с достаточной рентабельностью, ограниченное количество.

Плюс к этому, исключительно по человечески жаль зерно, из которого можно сделать хлебушек, виски или пивко, да что там - хотя бы просто скормить скотине для не менее интересных дивидендов в виде молочка и мяса. Гнать же спирт из стеблей той же пресловутой кукурузы или, например, целлюлозы, хоть и научились, да пока без особых перспектив с рентабельностью, поскольку в среднем, потратив 1 мегаджоуль энергии, можно получить бензина на 1,19 МДж, кукурузного спирта на 0,77 МДж и целлюлозного спирта - всего на 0,10 МДж. Есть и другие способы - вплоть до переработки масла, уже использованного для приготовления хрустящей картошки, о них мы поговорим в других публикациях, но многие из них, увы, также пока балансируют на грани рентабельности.

В поисках более "интересной" для переработки органики учёные обратили своё внимание на практически неисчерпаемый и легко возобновляемый ресурс - водоросли. Отдельно стоит отметить, что биотопливный потенциал водорослей является объектом пристального внимания учёных Франции, Германии, Японии и США с 50-х годов прошлого столетия, при этом особенно вопрос обострялся во время предыдущего нефтяного кризиса 70-х годов - в полной аналогии с нынешним состоянием дел.

Время от времени такие программы оживлялись и даже потом закрывались (нефть иногда дешевеет), как, например, программа Aquatic Species Program (ASP), проводившаяся с 1978 по 1996 год национальной лабораторией США по возобновляемой энергии - NREL (US National Renewable Energy Laboratory), с финансированием со стороны Office of Fuels Development, подразделения Министерства энергетики США.

По сути, водоросли - это та же органика, прекрасно подходящая для получения биодизельного топлива, разве что, обеспечивает отличный выход биомассы на каждый квадратный метр культивируемых площадей - в отличие от "сухопутных" растений; не содержит серы и других токсичных веществ - в отличие от нефти; наконец, отлично разлагается микроорганизмами и, главное, обеспечивает высокий процент выхода готового к использованию топлива: для некоторых типов водорослей - до 50% от исходной массы!

Для начала давайте более точно определимся о предмете разговора. Под водорослями (Algae) в широком смысле подразумеваются самые различные одноклеточные и многоклеточные организмы, самых причудливых форм и размеров (от долей микрона до 40 м). Wikipedia так определяет этот термин: Водоросли (лат. Algae) — группа автотрофных, обычно водных, организмов; содержат хлорофилл и другие пигменты и вырабатывают органические вещества в процессе фотосинтеза. Нас в большей степени интересуют микроводоросли.

Обычно микроводоросли обитают везде, где есть влага, однако наиболее обширными "поставщиками" водорослей в естественной среде являются болота и озёра, в том числе, солёные. В полной аналогии с растениями, для роста водорослям требуется три главных компонента - солнечный свет, двуокись углерода и, конечно же, вода. В процессе фотосинтеза - ключевого биопроцесса для растений, водорослей и ряда бактерий, энергия солнца перерабатывается в "химическую энергию". Помимо этого, микроводоросли умудряются аккумулировать в качестве материала для строения мембраны различные липиды и жирные кислоты, при этом их содержание колеблется у разных видов водорослей в пределах от 2% до 40% от общего веса. Именно эти компоненты, собственно говоря, интересуют учёных в первую очередь.

Стоит ли овчинка выделки? Может, ну его - путаться в этой грязной тине ради сомнительного удовольствия? Стоит, ещё как стоит! Данные, найденные мной на сайте издания Permaculture Activist, прямо скажем, ошеломляющи.

Да простят меня дотошные читатели за то, что поленился переводить галлоны в литры (один американский галлон - это примерно 3,785 литра). Дело, как вы понимаете, не столько в циферках абсолютного количества, возможно, гораздо важнее обратить внимание на в десятки раз превосходящие показатели микроводорослей относительно традиционных "сухопутных" культур.

В качестве примера серьёзных исследований по выращиванию водорослей можно привести результаты, полученные выше упомянутой лабораторией NREL в годы нефтяного кризиса 70-х в рамках программы Aquatic Species Program (ASP). Для производства биодизельного топлива, богатого липидами, использовались установленные на открытом воздухе прозрачные "садки", в которые подавался газ CO 2 из расположенной неподалёку электростанции на угле. В результате экспериментов ASP удалось установить порядка 300 подвидов водорослей - главным образом, диатомовых (кремневых) водорослей (Diatoms) и зелёных водорослей (Chlorophyceae), позволяющих достигать следующие результаты:

  • При оптимальных условиях роста микроводорослей достигать производительности до 15000 галлонов с акра в год
  • 7,5 млрд. галлонов биодизельного топлива может быть произведено на площади в 500 тысяч акров в пустынях (для производства такого же количества биотоплива из рапса потребовалось бы занять порядка 58 млн. акров).
  • Водоросли содержат жиры, углеводы и протеин, в некоторых случаях - до 60% жиров, до 70% которых может быть "добыто" элементарной отжимкой.
  • Не удалось найти подходящих культур для культивации вне "садков".

Программа, свёрнутая десять лет назад ввиду малой рентабельности из-за снизившихся тогда цен на нефть, совсем недавно получила "второе дыхание", поскольку, в связи со штурмом нефтяных цен 100-долларового рубежа, в октябре Министерство энергетики США в сотрудничестве с компанией Chevron объявило о поисках новых технологий переработки водорослей. В дополнение к этому, агентство DARPA, что при Пентагоне, в настоящее время спонсирует разработки авиационного топлива из растительного сырья, в том числе, из водорослей, и в настоящее время плотно сотрудничает с компаниями UOP (Honeywell), General Electric, а также с университетом Северной Дакоты. Говорят, что с ноября финансирование дополнительно увеличилось.

Так что, бросаем добычу нефти и займёмся разведением болот? Шутка, конечно, для производства биодизельного топлива пока что чаще применяют специальные "садки"- биореакторы для выращивания водорослей. Увы, скептицизма хватает, и главным образом, вопрос заключается в двух сложностях - стабильности ежедневного прироста массы и возможности доведения технологии переработки водорослевого сырья в биотопливо до коммерчески приемлемого уровня. Так, в одной из статей на сайте Biopact пессимизм в отношении "водорослевых" фабрик обоснован дотошным образом.

С другой стороны, только представьте, какое обширное поле действия для любителей модифицировать гены - лучше бы приложили свои силы здесь, чем клонировать колбасу (надеюсь, сегодня моё мнение по поводу генетически модифицированной пищи не очень бросается в глаза. Оно резко отрицательно, но об этом в другой раз).

Что ж, как говорится, дело за малым - научиться толком перерабатывать всю эту влажную биомассу в консистенцию, пригодную для залития в бак автомобиля.

В настоящее время широко распространены три способа переработки водорослей в топливо, и все три позаимствованы из методик переработки масличных культур - с помощью пресса или маслоотделителя; это селективная экстракция в надкритическом состоянии (Supercritical Fluid Extraction); это селективное отделение и очистка с помощью гексана (Hexane Solvent Oil Extraction).

Надо отметить, что в США проблемой получения недорогого биодизельного топлива для автомобилей занимаются десятки компаний и множество научных групп в самых разных университетах страны. Неловко говорить, но я даже не представлял масштабов работ на эту тему в США до тех пор, пока не взялся за изучение вопроса. К сожалению, мне так и не удалось найти хоть какую-нибудь статистику по объёмам производства топлива из водорослей, но ссылок на сайты компаний, лабораторий и различных фондов, всерьёз занимающихся этим вопросом, просто пропасть.

Сегодня же расскажу лишь о самом свежем и наиболее интересном сообщении последнего времени на тему создания недорогого и эффективного биотоплива из водорослей, которое, собственно, и стало поводом для этой публикации. Речь о разработках Центра технологий создания биотоплива (Center for Biorefining), что при университете штата Миннесота (University of Minnesota). Группа учёных этого центра многие годы исследует возможности использования различных типов водорослей для получения недорогого биотоплива для автомобилей.

На представленной выше фотографии хорошо заметен зеленоватый оттенок "сырья", разработанного в лаборатории Роджера Руана (Roger Ruan). Основным достижением, полученным Роджером Руаном и его коллегами, называют технологию полного цикла получения биотоплива из водорослей, включая способы увеличения скорости прироста массы, эффективные методики "отжимки", а также эффективные пути утилизации отходов, остающихся после переработки биомассы.

Основной проблемой, сдерживающей быстрый прирост массы водорослей, считают слишком малую - всего лишь на несколько сантиметров, возможность проникновения солнечного света в толщу водно-растительной смеси, из-за чего эффективность использования крупных ёмкостей, да и в целом открытых водоёмов, оказывается очень низкой. В этом плане учёным из Миннесоты удалось разработать такой принцип работы "фотобиореактора", при котором обеспечивается оптимальный режим перемешивания света и питательных веществ для хорошего выхода продукции при работе даже с "дикими" культурами водорослей.

Возможно, при чтении этого материала у кого-то уже зародилась аналогия "фотобиореактора" с тривиальным круглым искусственным водоёмом - типичным сооружением для очистки сточных вод. Именно на очистной станции Руан и команда его коллег экспериментируют с выращиванием водорослей. Благо, в фильтратах сточных вод предостаточно фосфатов и нитратов - веществ, крайне загрязняющих реки, но весьма полезных и питательных для водорослей. Видение будущего учёными из Миннесоты как раз включает этакие "водорослевые фермы", стоящие рядом с очистными сооружениями и потребляющими всё необходимое из стоков - в том числе, углекислоту, получаемую при сжигании осадка сточных вод.

Главная цель, которая стоит нынче перед исследователями - снижение себестоимости производства биотоплива. По словам представителей UOP LLC, подразделения Honeywell International по разработке биотоплива, результат можно будет считать удовлетворительным в случае достижения уровня ниже $2 за галлон, и, что показательно, сейчас множество специалистов не видят в этом ничего нереального. Впрочем, в Пентагоне вполне согласны, если авиационное топливо из водорослей будет стоить менее $5 за галлон, а в идеале - менее $3 за галлон.

Если пофантазировать всласть, можно представить себе "водорослевые фабрики" где угодно, благо, уж что-что, а отходы человечество научилось производить лучше всего, в неограниченных количествах. Более того, для такой фабрики совершенно не понадобится использования пахотных земель - как в случае с производством биотоплива из растений, и больше не случится подорожаний растительного масла и хлеба из-за растрат урожая на производство топлива.

Самое же, пожалуй интересное, что на свете существует превеликое количество водорослей, с удовольствием живущих и размножающихся в морской солёной воде. Такое положение дел, в сочетании со "всеядностью" бактерий в отношении отходов очистных сооружений и тепловых электростанций, можно назвать квинтэссенцией разумного подхода к борьбе с загрязнением планеты и розовой мечты всех экологов.

Вместо эпилога

В прошлом году одна новозеландская компания продемонстрировала всему миру модель Range Rover, усовершенствованную для работы с биодизельным топливом из водорослей. Тогда эксперты отнеслись с большим скептицизмом к перспективам таких автомобилей и в один голос заявили, что пройдёт много лет, прежде чем эта технология станет актуальной. Ага, хорошо умничать при цене нефти $50-$60 за баррель, интересно бы послушать этих экспертов с поправкой на нынешние цены.

Зато группа учёных из Миннесоты полна оптимизма и обещает представить общественности несколько "демонстрационных" фабрик по переработке водорослей в топливо уже в ближайшие несколько лет.

Находясь где-то в середине написания этого материала, я планировал ближе к концу статьи "пустить яда" в адрес мелиораторов, без головы осушивших в своё время множество болот. Ведь, помимо вусмерть искривлённой экологии таких регионов теперь, глядишь, и болота бы на что-нибудь сгодились. Ладно уж, сегодняшний сюжет обойдётся без мелиораторов. До следующих встреч, и пишите, какие темы IT-баек были бы вам интересны в будущем.

http://www.3dnews.ru/

ЭТБЭ,Этил-трет-бутиловый эфир, биотопливо, альтернативная энергия, жидкое биотопливо

Экология потребления.Наука и техника:Статья рассказывает о реальности и перспективах пищевого и энергетического использования водорослей, экономических и экологических аспектах производства водорослевого биотоплива.

Водоросли относятся к числу наиболее быстрорастущих живых организмов, что не могло не вызвать интереса к их использованию, как в пищевых, так и непосредственно энергетических целях - в качестве биотоплива. Активные исследования и культивирование водорослей идут начиная с 1960-х годов как в мире, так и в России. Статья рассказывает о реальности и перспективах пищевого и энергетического использования водорослей, экономических и экологических аспектах производства водорослевого биотоплива.

Водоросли в системе живых организмов

Начиная разговор о водорослях и их ценности для энергетики, нельзя не упомянуть, что вся энергия на Земле, за исключением приливной и геотермальной, является прямой или трансформированной энергией солнечных лучей.

Нагревание Солнцем поверхности суши приводит к движению воздуха, что создаёт ветряную энергию. В свою очередь, ветер на поверхности океана создаёт волновую энергию. Нагревание Солнцем водной поверхности ведёт к испарению воды и создаёт круговорот воды в природе, без которого не было бы энергии движущейся воды.

Наконец, без Солнца невозможны жизнь, прирост биомассы и биоэнергия. Более того, нефть, газ, уголь, торф - всё это именно биомасса, в различной степени трансформированная, и тоже производная от солнечной энергии.

Что касается водорослей, то эта группа живых организмов создаёт, без преувеличения, фундамент жизни на Земле, непосредственно используя солнечную энергию для роста.

Водоросли (лат. Algae) в обиходном понимании - это растения, связанные с водной средой обитания, что, однако, не всегда так. Водоросли - весьма неоднородная совокупность. Не все водоросли живут только в воде, равно как и не все водные растения относят к водорослям.

Живые организмы классифицируются различными способами. Принятая в настоящее время классификация включает два крупнейших подразделения (таксона) или две империи живых организмов:

1. Вирусы - доклеточные организмы.

2. Клеточные организмы. Клеточные организмы разбиваются на два основных таксона менее высокого порядка (надцарства или домена):

1. Прокариоты - организмы без выраженного ограниченного мембраной клеточного ядра.

2. Эукариоты - организмы с клеточным ядром.

Прокариоты включают в себя два царства организмов - археи или архебактерии и бактерии или эубактерии. Эукариоты - более обширная группа живых организмов, включающая уже известные царства грибов, растений и животных.

Организмы, объединяемые понятием «водоросли», находятся почти на всех ступенях таксономической лестницы клеточных организмов - от бактерий до растений (табл. 1) - и включают две основные группы: прокариотические водоросли - царство в домене прокариот, включающее подцарства (по другой классификации - отделы) сине-зелёных и прохлорофитовых водорослей; настоящие водоросли - подцарство в царстве растений, включающее ряд отделов.

Интересно, что таксономическое положение прокариотических сине-зелёных водорослей остаётся дискуссионным вопросом. Микробиологи Роже Стениер и Корнелис Ван Ниль, сформулировавшие теорию деления живых организмов на два глобальных домена - прокариоты и эукариоты, предложили считать термины «прокариот» и «бактерия» эквивалентными . С этого момента синезелёные водоросли классифицируются двояко - как бактерии (цианобактерии) и как растения, будучи фотосинтезирующими организмами. Кроме того, все клеточные живые организмы можно разбить на одноклеточные (простейшие, низшие, протисты) и многоклеточные (высшие) и выстроить классификацию на этой основе, выделяя простейших в отдельное царство. Среди водорослей есть и одноклеточные, и многоклеточные, а также колониальные организмы, образующие систему взаимосвязанных клеток.

Размеры водорослей варьируются в широком диапазоне - от 0,5–1 мкм (10–6 м) у ряда цианобактерий до десятков метров у некоторых растительных форм водорослей. Водоросли живут как в морских, так и в пресных водах, а также в почве.

Общим свойством зелёных растений и водорослей, в том числе прокариотических, является способность к фотосинтезу или преобразованию электромагнитной энергии солнечных лучей в энергию химических связей органических веществ, осуществляемому на свету благодаря наличию фотосинтезирующих пигментов - хлорофиллу у растений, бактериохлорофилла и бактериородопсина у прокариот.

Реакция фотосинтеза - трансформация углекислого газа и воды в глюкозу и кислород - выглядит так:

Для зелёных растений и водорослей фотосинтез является источником питания и роста. В свою очередь, именно фотосинтезирующим организмам мы обязаны появлением и сохранением пригодной для дыхания атмосферы.

Фотосинтезирующие организмы принадлежат разряду автотрофных, использующих для питания непосредственно неорганическое вещество, преобразуемое ими в органическое. Остальные организмы, в том числе животные и человек, - гетеротрофные, неспособные синтезировать органическое вещество из неорганического. Для них, в свою очередь, автотрофы создают необходимую кормовую базу и являются источником физического существования. Таким образом, водоросли относятся к организмам, с одной стороны, обязанным своим существованием непосредственно Солнцу, с другой - являющимся основой всей остальной органической жизни на Земле.

В связи с этим необходимо рассмотреть ключевые количественные показатели - объём и прирост биомассы растений и водорослей. Биомасса Земли в целом оценивается в 1,3 трлн тонн, из которых на фитомассу (растения) приходится более 1,2 трлн тонн, или более 95 % всей земной биомассы (табл. 2).

Отметим, что если в категориях биомассы рассматривать человека и население Земли, то она при населении около 7 млрд человек составит величину порядка 300 млн тонн - примерно 1/3000 или 0,03 % от всей земной биомассы и около 1 % от всей зоомассы.

При этом ежегодный прирост биомассы составляет 17 % от общей её величины или около 220 млрд тонн, в том числе океанической биомассы - более 87 млрд тонн.

Наиболее высокие скорости размножения и, соответственно, прироста биомассы характерны для мельчайших организмов, к числу которых относится и большая часть водорослей. В частности, только биомасса фитопланктона (плавучих морских водорослей) в Мировом океане оценивается (в сыром весе) в 1,5 млрд тонн, а его годовой прирост - в 550 млрд тонн. Иными словами, за год масса водорослей способна вырасти в 350 раз. По некоторым оценкам, на водоросли приходится 2/3 всей биомассы Земли. Точные же подсчёты в данном случае вряд ли возможны.

С наибольшей скоростью размножаются мельчайшие одноклеточные водоросли или микроводоросли - промежутки времени между делениями клеток в благоприятных условиях могут сокращаться до 20 минут и даже меньше. В этом случае всего за сутки одна клетка теоретически может дать примерно 5 × 1021 потомков. При массе одной клетки около 665 фемтограмм (6,65 × 10–16 кг или 6,65 × 10–13 г) их общая масса в течение суток превысит 100 тонн, а величина, равная всей нынешней биомассе Земли, будет достигнута ещё 12 часов спустя. Даже в реальных, а не идеальных условиях высокая скорость размножения водорослей, покрывающих поверхности водоёмов, хорошо известна, а при выращивании в пруду микроводоросль спирулина (Spirulina), как показывает практика, удваивает свою биомассу каждые двапять дней.

Водоросли как пища и как топливо

Благодаря столь огромному потенциалу размножения - при этом за счёт почти исключительно солнечной энергии и воды, без потребления органических веществ! - микроводоросли ещё несколько десятилетий назад стали объектом пристального внимания и исследований возможности использования в качестве пищевого и энергетического продукта.

Перспектива культивирования водорослей с ежегодным сбором десятков и сотен тонн биомассы с 1 га водной поверхности - в разы и даже на порядки больше, чем урожайность любой известной сельскохозяйственной культуры, и без существенных затрат - не могла не выглядеть крайне заманчивой.

Первоначальным было пищевое использование водорослей, имеющее давнюю историю. В частности, известно, что ацтеки, инки, а также народы Центральной и Восточной Африки, живущие в районах озера Чад и Великой рифтовой долины, употребляли в пищу лепёшки из высушенной спирулины.

В связи с этим, начиная с 1960-х годов в мире появляется интерес к водорослям (большей частью, к спирулине), прежде всего как пище - и для животных, и для человека. Был также обнаружен ряд полезных свойств водорослей, связанных с укреплением иммунитета, профилактикой и лечением ряда заболеваний, повышением продуктивности домашнего скота и сельскохозяйственных культур.

Во второй половине 1970-х годов спирулина в виде порошка или капсул появилась на мировых продовольственных рынках, где она презентовалась в качестве нового естественного продукта - энергетической натуральной пищевой добавки с высоким содержанием белка, то есть «пищи будущего».

В США предприятия по выращиванию микроводорослей в искусственных прудах, работающие в экспериментальном режиме, были созданы в 1977 году. Первые пруды появились в пустынной местности в графстве Имперская долина (Imperial Valley) на юго-востоке штата Калифорния. Условия там благоприятны благодаря сочетанию тёплой и солнечной погоды с возможностью подачи воды из реки Колорадо.

Параллельно выращиванием водорослей занялась Япония, далее в процесс включились предприятия в Индии, Китае, Таиланде, Тайване и Мексике.

В течение 1980-х годов и первой половины 1990-х годов производство микроводорослей в мире выросло до 1000 тонн. К концу 2000-х годов мировые объёмы производства микроводорослей, включая спирулину, хлореллу (chlorella), дуналиеллу (dunaliella), хематококкус (haematoccocus), достигли 10 тыс. тонн в сухом весе.

Почти в это же время, в 1980–1990-е годы, в СССР и России начали исследование и культивирование спирулины в пищевых целях, для использования в качестве биодобавок, как в пищу человеку, так и в корм для скота и птицы.

В этих работах активное участие принимали также и сотрудники Научно-исследовательской лаборатории возобновляемых источников энергии (НИЛВИЭ) географического факультета МГУ имени М. В. Ломоносова. Был установлен положительный эффект использования спирулины, в частности, в качестве пищевых добавок для птицы. В настоящее время в России существуют отдельные небольшие производства спирулины.

Что касается возможностей непосредственно энергетического использования водорослей - для получения биотоплива, то активные исследования в этом направлении начались также в 1960–1970-е годы. Лидерами в этих изысканиях стали, в частности, Французский институт нефти (Institut francais du petrole, IFP) и Национальная лаборатория возобновляемой энергии (National Renewable Energy Laboratory, NREL) Министерства энергетики США (Department of Energy, DoE).

NREL в 1978 году начала программу исследования возможностей получения топлива из микроводорослей Aquatic Species Program (буквально - Программа водных видов или водной флоры). Она была свёрнута к 1996 году, когда обнаружилось, что биотопливо из водорослей будет слишком дорогим по сравнению с ископаемыми углеводородами, однако в 2010 году было объявлено о возобновлении исследований в связи с нестабильностью цен на нефть и ростом требований к энергетической безопасности, экологической чистоте и снижению эмиссии парниковых газов.

В последние несколько лет биотопливо из водорослей получают и используют в экспериментальном режиме.

Параллельно исследования в этом направлении проходили в СССР, в том числе в НИЛВИЭ. В частности, в 1989–2002 годах лаборатория проводила исследования биопродуктивности и возможностей использования микроводорослей в качестве источника энергии, для получения биогаза и жидкого биотоплива, на базе экспериментального полигона Морского гидрофизического института АН УССР на южном берегу Крыму у посёлка Кацивели. Сотрудниками лаборатории была разработана и сконструирована система «Биосоляр», предназначенная для выращивания микроводорослей - фотосинтезирующие блоки или биогенераторы, с размещением в море и на суше, общей площадью несколько сотен квадратных метров.

В качестве объекта эксперимента была выбрана микроводоросль спирулина платенсис (Spirulina platensis), также называемая артоспира (Arthospira platensis). Одной из особенностей эксперимента была постепенная адаптация вида (в естественных условиях спирулина живёт в пресноводных субтропических и тропических водоёмах) к морской воде Чёрного моря. Опыты показали достаточно высокую продуктивность - годовой выход биомассы с каждого блока водорослевой плантации площадью 70 м2 достигал одной тонны. Экстраполируя - это более 140 тонн с 1 га, хотя достижение такого результата на больших площадях в российских условиях - отдельная задача.

Кроме того, исходное сырьё для получения биотоплива - липиды (жиры), содержание которых в разных видах различно. Спирулина обладает высокой долей белка - около 60 % сухой массы, что в числе прочего делает её ценным пищевым продуктом. В то же время содержание липидов - всего 7 %. Для сравнения, в семенах рапса и подсолнечника на липиды приходится 30–60 % массы, в семенах сои и кукурузы - 15–25 % и выше, в плодах масличной пальмы - 45–70 %. Именно эти культуры в настоящее время используются в качестве основного сырья для производства биотоплива. Поэтому идёт работа с микроводорослями, имеющими более высокое содержание липидов, пока носящая и в нашей стране (включая НИЛВИЭ), и в мире главным образом экспериментальный характер.

Водоросли как источник энергии – преимущества и недостатки

Итак, микроводоросли очень высокопродуктивны. Урожай с одного гектара теоретически может ежемесячно достигать тонн и даже десятков тонн в сухом весе, что в разы и даже на порядки выше, чем у традиционных сельскохозяйственных культур. При этом содержание липидов у ряда видов, таких как ботриококкус брауни (Botryococcus braunii), дуналиелла (Dunaliella), наннохлорис (Nannochloris), стихококкус (Stichococcus) в оптимальных условиях может достигать 80 %. Таким образом, теоретически возможный выход биотоплива в десятки и даже сотни раз выше, чем у используемых в настоящее время масличных культур (табл. 3).

При этом можно избежать конфликта с продовольственно-ориентированным использованием сельскохозяйственных земель. Плантации микроводорослей могут располагаться в естественных и искусственных водоёмах, на неудобных и неиспользуемых землях и морских акваториях, при этом занимая существенно меньшие площади.

Наконец, выращивание традиционных сельскохозяйственных культур на суше сопряжено с большим объёмом выбросов парниковых газов и других загрязняющих веществ. На фоне этого культивирование водорослей выглядит экологически абсолютно безопасным, более того, увеличивающим поглощение углекислого газа и выделение кислорода в атмосферу, что создаёт двойной положительный эффект - получение пищи и топлива, сопровождающееся не загрязнением, а с очищением среды. Проблема, как обычно, состоит в том, что реальные условия, как правило, далеки от оптимальных и теоретически возможных.

В рамках упоминавшейся выше программы ASP в США микроводоросли с большим содержанием липидов культивировались в открытых прудах в штате НьюМексико (юго-запад страны). Средняя продуктивность составляла 20 г/м2 в сутки (что соответствует 73 тонн с одного гектара в год), а в отдельные периоды - до 70 г/м2 в сутки.

Тем не менее, выяснилось, что невозможно в течение длительного времени поддерживать монокультуру микроводорослей в открытой системе, где неизбежно присутствуют и другие организмы. Кроме того, высокая продуктивность водорослей возможна при достаточно большой подкормке азотом, в отсутствие его она падает. В данном случае видно сходство с традиционными сельхозкультурами, также требующими азотных удобрений. В то же время при отсутствии азота содержание жиров в клетках водорослей выше. Итак, задача одновременного роста биопродуктивности и содержания липидов, обусловливающих энергоэффективность культуры, оказывается неразрешимой, и требуется поиск оптимального соотношения того и другого.

Японские исследователи из Научноисследовательского института инновационных технологий Земли (Research Institute of Innovative Technology for the Earth (RITE)), работавшие над этой же задачей в 1991–1999 годы, пришли к сходным результатам.

В 1997–2001 годах крупный исследовательский проект в этом же направлении осуществлялся на Гавайских островах, с микроводорослью хематококкус плювиалис (Haematococcus pluvialis), которую на первой стадии выращивали в закрытых фотобиореакторах, на второй - помещали в условия открытых водоёмов. Средняя продуктивность биомассы культивируемой водоросли составила 38 тонн с 1 га, максимальная превышала 90 тонн, выход биотоплива, соответственно, был 11,4–27,5 тонн с 1 га, что в несколько раз выше, чем у самых продуктивных масличных культур на суше.

В то же время, при выращивании в открытых условиях и биопродуктивность, и содержание липидов оказываются существенно ниже, а выращивание в закрытом биореакторе ведёт к существенно более высоким затратам.

В переводе на энергетический эквивалент получается, что для получения 1 л биодизеля из микроводорослей требуются энергозатраты, эквивалентные 0,56– 0,81 л топлива (в среднем около 0,7 л), включающие электроэнергию, питательные вещества и другое. В данном случае, помимо экономической составляющей, присутствует и экологическая - поскольку энергия, идущая на выращивание водорослей, добывается уже из невозобновляемых источников и экологически безопасной не является, то есть экологический эффект производства биодизеля в значительной степени обесценивается. Кроме того, существует отрицательный экологический эффект, связанный с азотной подкормкой и водопотреблением плантаций водорослей, то есть такой же, как и в традиционном сельскохозяйственном производстве. Кроме того, речь идёт о затратах без учёта инвестиций, оплаты труда, других издержек, связанных, в частности, с транспортировкой топлива.

Расчёты затрат на получение биодизеля из микроводорослей дают существенно различающиеся результаты, в очень высокой степени зависящие от вида и способа производства водоросли, природных условий и других факторов. В частности, по расчётам участников программы ASP, стоимость 1 л «водорослевого» биодизеля составила 26–86 центов ($ 39–127 за баррель), в гавайском проекте - около 40 центов ($ 56 за баррель), а исследователи из Британской Колумбии (Канада) дают существенно более высокие цифры - от $ 2,5 до $ 7 за 1 л.

По нашим расчётам, инвестиционные затраты на обустройство 1 га водорослевых плантаций в открытых условиях, включая монтаж культиваторов, оборудование для приготовления питания, перемешивания, сушки и фильтрации биомассы и другое, составят около $ 50 тыс.

Операционные затраты в крайне высокой степени зависят от местных условий, начиная от климата и заканчивая уровнем оплаты труда. Их можно оценить в $ 50–100 тыс. в год, но в условиях России они могут быть в несколько раз выше, в частности, из-за существенно большего по сравнению с субтропиками и тропиками расхода электроэнергии и короткого вегетационного периода при выращивании в открытых условиях.

Это вполне приемлемые условия при выращивании водорослей в качестве пищевых и лекарственных добавок, но как источник топлива они оказываются слишком дорогими.

При данных затратах, даже в случае сбора с 1 га 30 тонн биомассы ежегодно, каждая тонна будет обходиться в $ 1600– 3200 ($ 1,6–3,2 за 1 кг), даже без учёта первоначальных инвестиций и затрат на получение собственно биотоплива. Это близко к цифрам, приводимым канадскими исследователями.

Перспективы водорослевой энергетики

Интерес к водорослям в качестве источника биотоплива закономерен при ценах нефти в $ 100 за баррель и выше, как было во второй половине 2000-х годов. В настоящее время ситуация далеко не столь благоприятна, и вряд ли можно предсказать, изменится ли она в лучшую для возобновляемой энергетики сторону в обозримом будущем.

В настоящее время идёт и будет продолжаться поиск путей снижения затрат на производство биоэнергии из водорослей. Помимо прочего, он включает поиск, отбор и выведение культур водорослей с повышенным содержанием липидов, более продуктивных и жизнестойких.

В качестве же пищевого продукта (что тоже можно считать источником энергии) водоросли уже используются и имеют очевидные перспективы. Вероятно, как и в случае с торфом, в дальнейшем целесообразно комплексное использование выращиваемых водорослей с созданием целого спектра пищевых, лекарственных, энергетических продуктов на выходе. Для России это также могло бы стать одним из направлений среднеи долгосрочного инновационного роста и создания высокотехнологичной экономики на отечественной интеллектуальной и производственной базе. опубликовано

Сегодня человечество является свидетелем новой революции в области получения биотоплив из непищевого возобновляемого сырья, практически не отличающихся по свойствам от традиционных и способных их заменить. В качестве такого сырья выбраны водоросли. От растений, произрастающих на твердом грунте, они отличаются рядом преимуществ - высокой урожайностью, способностью развиваться в воде, а не на пахотной земле. .

Сравнение энергонасыщенности масличных культур показывает, что удельная энергетическая ценность водорослей с 50%-ным содержанием липидов (930 МВт ч/га) в 15,5 раз больше, чем у самой энергонасыщенной наземной масличной культуры - китайского сального дерева (60 МВт- ч/га).

Существуют водоросли, в которых содержание триглицеридов, основы растительного масла, более половины массы. Ни одно из существующих наземных растений не в состоянии конкурировать с водорослями по эффективности фотосинтеза, лежащего в основе урожайности и по содержанию масел и, соответственно энергии в них.

Потенциал производства масла из различных культур характеризуется следующими показателями: «производительность» кукурузы составляет 172 л на гектар в год; пальмового масла 5950 л/гектар, а типичных «энер-гетических» водорослей - до 95000 л/га при выращивании в открытых во-доемах..

Водоросли в производстве энергоносителей превращают углекислый газ из проблемы в фактор прибыли. С02 становится важнейшим ресурсом, который можно поставить на промышленную основу. Из углекислоты с фотосинтетической эффективностью 5-10% при минимальных затратах воды, на земле, непригодной для использования в сельскохозяйственных целях, можно получить либо биотопливо, либо сырье для химической про-мышленности. .

Преимуществ водорослей:

  • -Непищевая биомасса - не представляет угрозы продовольственной безо-пасности. -Растут в 20-30 раз быстрее наземных растений (некоторые виды могут удваивать свою массу несколько раз в сутки).
  • -Производят в 15-100 раз больше масла с гектара, чем альтернативные рапс, пальмовое масло, сало и др.
  • -Отсутствие твердой оболочки и, практически лигнина, делает их перера-ботку в жидкие топлива более простой и эффективной
  • -Производство и использование биотоплива не требует изменения россий-ского законодательства, как в случае с этанолом
  • -Растут в пресной, соленой воде или в промышленных стоках, где исполь-зуется для их очистки. -Можно выращивать промышленно в биореакторах или фотореакторах с искусственным освещением, либо в открытых резервуарах на некультиви-руемых почвах, включая пустыни
  • -Фотореакторы встраиваются в технологические линии уже сущест- вую-щих промышленных предприятий (ТЭЦ, НХ, цементные заводы) - Уменьшают эмиссию углекислого газа (поглощают до 90% С02 с выделением кислорода). -Являются источниками масел, протеинов, углеводородов.

Ведущие нефтяные и энергогенерирующие компании Shell, BP, Chevron и другие уделяют серьезное внимание новому направлению, инвестируют в его развитие, осознавая неизбежность возникновения нового сектора рын-ка, так как они не хотят терять контроль над рынком моторных топлив.

Согласно Акту энергетической независимости и безопасности США пла-нируют к 2022 году достичь производства биотоплива непищевого проис-хождения в объеме примерно 80 млн. т/год. Принимая во внимание тен-денцию роста доли биотоплив из водорослей можно полагать, что к 2022 году оно перешагнет порог 50 %, что соответствует 40 млн. т/год и составляет 43% нынешнего потребления бензинов и дизельных топлив в России (примерно 92 млн. т/год, из них 32 млн. т/год бензина и 60 млн. т/год - дизельного топлива). .

Получение и технология биотоплива из водорослей привлекает ученых, предпринимателей и таких гигантов «нефтянки», как Exxon Mobil.

При оптимальных условиях роста микроводорослей можно достигнуть производительности до 168518 литров с га в год. 34 млрд, лит-ров биодизельного топлива может быть произведено на площади в 200 тысяч га в пустынях (для производства такого же количества биотоплива из рапса потребовалось бы занять порядка 23.5 млн. га).

Таблица. 1-4

Для замены всех видов топлива на транспорте США, потребуется 640 млрд, литров биодизельного топлива., Для получения этого количества потребуется суши почти 39000 квадратных км. Пустыня Sonora в юго- западной части США составляет 120000 квадратных километров. То есть, необходимая площадь составляет 12.5% от пло-щади этой пустыни.

Эйхорнин.

Эйхорния - самое уникальное водное тропическое растение, акклиматизированное в средних широтах с выживанием до нулевой температуры воды. Уникальность: сверхбыстрое вегетационное размноже-ние и способность очищать воду почти от любых химических и бактериологических загрязнений. Это плавающее водное растение, надводная часть которого состоит из листьев и цветка (второе название - водный гиацинт). В воде находятся нитевидные корни, на которых находятся множество полезных микроорганизмов..

При создании благоприятных условий в интервале температур 16 - 32°С растение может вегетировать в любом регионе, включая северные районы. Зеленая масса эйхорнии используется для производства биогаза, в состав которого входит до 75% метана. . Проводимые работы по использованию эйхорнии в целях очистки за-грязненных вод дали результат ее прироста до 10-15 кг в сутки с одного квадратного метра поверхности биопруда, т.е. за сутки биопруд площа-дью 1000 м 2 способен производить до 15 тонн биомассы эйхорнии. . Эта биомасса может быть использована для получения различных видов биотоплива и бионефти.

Взятые. Они могут произвести в 30 раз больше энергии на единицу площади, чем большинство видов биотоплива , полученных из зерновых культур. Такое открытие может способствовать созданию новой индустрии биологического топлива, основанной на морских водорослях , не говоря уже об экономии средств на затраты для засева зерновых. Министерство энергетики США подсчитало, что...

https://www.сайт/journal/122453

Выращивания их близко к аэропортам в целях предотвращения экологических издержек. Исследователи из Cranfield заявили, что водоросли смогут производиться авиационной промышленностью на коммерческой основе через четыре года. По их словам, водоросли представляют собой наилучший вариант из всех видов биотоплива , поскольку они не конкурируют с продуктами питания за землю. Это не первый случай, когда British Airways предприняла...

https://www.сайт/journal/131705

Был получен патент на процесс производства молекул дизельного топлива в организме цианобактерии. Получением топлива из кукурузы или водорослей специалисты занимаются уже давно, но но Joule, по её словам, впервые устранила посредника - биомассу, ... секрет в цианобактериях: они распространены повсеместно и проще водорослей , поэтому ими легче манипулировать. Компания намерена уже в текущем году начать строительство первого предприятия по производству биотоплива , а на рынок продукт выйдет через пару лет...

https://www.сайт/journal/135241

Европейский аэрокосмический концерн показал миру будущее «зеленой» авиации. На Берлинском авиасалоне в воздух взмыл первый в мире самолет, заправленный биотопливом из морских водорослей . Над этим проектом и трудился ЕАДС (EADS). За основу был взят небольшой четырехместный самолет «Даймонд Ди-эй - 42» (Diamond DA-42). Как отмечают инженеры, чтобы «озеленить» ...

https://www.сайт/journal/127016

Природного. Именно по этой причине уже не один год ученые искали способ наладить производство биотоплива , химически не отличающегося от получаемого на нефтеперерабатывающих заводах, однако первыми успеха достигла группа... исследователей из инновационной компании LS9 в Сан-Франциско, США, занимающейся разработкой новых видов биотоплива . В своей работе ученые использовали генетический материал микроорганизмов - так называемых цианобактерий, некоторые из которых способны...

https://www.сайт/journal/128377

Что арбузный сок является эффективным источником химических соединений, которые могут использоваться для производства биотоплива , например, этанола. При этом ученые отмечают, что арбузный сок можно использовать сразу или... его получение было экономически выгодным. В настоящее время ученые ищут разнообразные ресурсы для получения биотоплива . Так, недавно в Гренландии решили делать биотопливо из полярных акул Somniosus microcephalus, которые регулярно попадаются в сети местных рыбаков. Популяция...

https://www.сайт/journal/120029

Замены топлив, получаемых с помощью нефтепереработки. Уже давно идут разговоры о том, что биотопливо сможет существенно понизить нашу зависимость от нефти, однако традиционные кандидаты в компоненты топливных смесей биологического... недостатку продовольствия. В свете описанных выше обстоятельств многие исследователи давно пытаются разработать методы получения «биотоплива второго поколения», сырьем для которого могут быть непригодные для пищи целлюлозосодержащие компоненты растений, часто...

Возобновляемое сырье, о котором так много говорят в связи с истощением природных ресурсов, - это органические отходы промышленности, сельского и лесного хозяйства. Такая растительная биомасса дешевле газа, угля и нефти, из нее можно получать новые продукты, одновременно решая проблему утилизации отходов. T&P публикуют статью из сборника «Атлас технологий будущего» о том, как получить дизельное топливо из водорослей, электричество - из органических отходов, а биоразлагаемую упаковку - из свеклы.

Особенно перспективными являются технологии переработки возобновляемого сырья в биотопливо и электроэнергию, а также решения для производства биополимерной упаковки. Применение этих технологий позволяет осуществлять их рециклизацию, т. е. вторичную переработку в новом цикле создания продукции (в частности, субстратов в топливных элементах и биопластиков).

Потенциал использования названных технологий в России очень высок. Их разработка и внедрение приведут в среднесрочной перспективе к снижению зависимости экономики страны от энергоресурсов, зарубежных продуктов и технологий, созданию новых рынков.

Биодизель из микроводорослей

По мере роста численности населения и повышения мобильности людей увеличивается ежегодная потребность в авиационных и автомобильных перевозках. Удовлетворять усиливающийся спрос на моторные топлива возможно путем производства биодизеля нового поколения из зеленых микроводорослей - альтернативы биодизелям, получаемым на основе сельскохозяйственных культур.

Зеленые микроводоросли способны преобразовывать углекислый газ в органические соединения, оказывая при этом очищающий эффект на атмосферу и гидросферу. Такое биотопливо можно использовать в двигателях дизельного типа: оно очень близко по составу к традиционным моторным топливам - продуктам нефтепереработки. Очевидные преимущества микроводорослей - высокие скорость роста биомассы и содержание масел, удобство сбора и возможность выращивания непосредственно на предприятиях и вблизи электростанций - усиливают интерес ученых и многих крупных корпораций к их исследованию и промышленному использованию. В ряде стран начато серийное производство специальных биореакторов по выращиванию микроводорослей. Япония и США уже осуществили успешные испытания авиационного и автотранспорта, работающего исключительно на биодизеле из водорослей.

Эффекты

    Стимулирование развития транспортного сектора, повышение его экологичности и удовлетворение растущих потребностей в топливе.

    Снижение остроты конкуренции между техническими и продуктовыми посевными площадями (благодаря культивированию микроводорослей в фитореакторах, вихревых плавающих аквареакторах, открытых водоемах).

    Развитие регионов с неблагоприятными социально-экономическими условиями и снижение их зависимости от импортируемых топлив.

    Получение белков, антиоксидантов, пищевых красителей и других полезных продуктов из микроводорослей.

Оценки рынка

К 2030 г. мировое производство биотоплива увеличится до 150 млн тонн в нефтяном эквиваленте при ежегодных темпах роста на уровне 7–9%. Его доля достигнет 4–6% общего объема топлива, потребляемого транспортным сектором. Биотопливо из водорослей может заменить более 70 млрд литров ископаемого топлива ежегодно. Рынок биотоплива в России к 2020 г. может вырасти более чем в 1,5 раза - до отметки в 5 млн тонн в год. Вероятный срок максимального проявления тренда: 2025–2035 гг.

Драйверы и барьеры

    Экологическая политика развитых стран по минимизации масштабов загрязнения окружающей среды.

    Необходимость масштабных инвестиций для строительства заводов по производству биодизеля, настройки технологических процессов.

    Зависимость эффективности роста микроводорослей от интенсивности солнечного света (при выращивании в открытых водоемах).

Структурный анализ

Прогноз структуры мирового рынка биотоплива: 2022 (%)

Электроэнергия из органических отходов

Процессы утилизации и переработки отходов могут быть совмещены с производством практически значимых продуктов и даже электроэнергии. При помощи специальных устройств - микробных топливных элементов (МТЭ) - стало возможным производить электроэнергию из отходов напрямую, минуя стадии получения биогаза и его последующей переработки в электричество.

МТЭ представляют собой биоэлектрическую систему. Эффективность ее функционирования зависит от метаболической активности бактерий, которые расщепляют органические соединения (отходы) и передают электроны на электрическую цепь, встроенную в эту же систему. Наибольшей эффективности таких бактерий можно добиться, встраивая их в технологическую схему предприятий по очистке сточных вод, содержащих органические вещества, при расщеплении которых выделяется энергия.

Уже существуют лабораторные разработки, позволяющие использовать МТЭ для подзарядки аккумуляторов. По мере масштабирования и оптимизации технологических решений станет возможным обеспечивать электричеством и небольшие предприятия. Например, высокопроизводительные МТЭ, работающие на объемах от десятков до тысяч литров, обеспечат автономное питание очистных сооружений.

Эффекты

    Повышение экологичности производственных процессов и эффективности работы предприятий, снижение их зависимости от внешних источников электроэнергии, уменьшение себестоимости продукции и расходов на приобретение очистных технологий.

    Улучшение ситуации в энергодефицитных регионах, повышение их конкурентоспособности благодаря использованию МТЭ.

    Возможность автономного получения электроэнергии для неэнергоемких целей (например, в небольших фермерских хозяйствах).

Оценки рынка

70% - настолько вырастет к 2020 г. в России доля отходов, которые будут перерабатываться методами биотехнологий, по сравнению с 2012 г. В странах Европейского союза доля электроэнергии из биогаза составит около 8%. Вероятный срок максимального проявления тренда: 2020–2030 гг.

Драйверы и барьеры

    Увеличение объемов органических отходов и рост потребности в электроэнергии.

    Возможность работы биореакторов типа МТЭ на различных источниках энергии, включая сточные воды.

    Недостаточный уровень инвестиций, необходимых для встраивания МТЭ в технологические процессы, длительный период их окупаемости.

    Необходимость привязки биореакторов к местам образования отходов.

    Относительно низкая эффективность ныне функционирующих опытно-промышленных конструкций биореакторов типа МТЭ.

Структурный анализ

Исследования микробных электрохимических систем по типам: 2012 (%)

Биоразлагаемая полимерная упаковка

Повсеместное распространение упаковки из синтетических полимеров (пакетов, пленок, контейнеров) приводит к обострению проблемы загрязнения окружающей среды. Решить ее может переход к упаковочным материалам из биоразлагаемых полимеров, быстро утилизируемых и удобных в использовании.

В большинстве развитых стран в производстве упаковки намечается тенденция вытеснения тяжело и долго (до нескольких сотен лет) разлагающихся синтетических полимеров биоразлагаемыми (с периодом утилизации 2–3 месяца). Ежегодный объем их потребления только в Западной Европе составляет около 19 тыс. тонн, в Северной Америке - 16 тыс. тонн. Вместе с тем по ряду показателей биополимерные упаковочные материалы пока отстают от традиционных синтетических.

Технологии производства биополимерных материалов на основе полимолочной кислоты из растительных сахаров зерновых культур и сахарной свеклы позволяют производить упаковку с высокими потребительскими характеристиками: эластичную и прочную, устойчивую к влаге и агрессивным соединениям, непроницаемую для запахов, с высокими барьерными свойствами и при этом эффективно и быстро разлагающуюся. Совершенствование технологий направлено на снижение их материало- и энергоемкости.

Эффекты

    Формирование и развитие нишевых рынков - термоусадочных упаковок, влаго- и запахонепроницаемых пакетов, ударостойких контейнеров и др.

    Сокращение зависимости экономики от нефтегазового сырья.

    Снижение негативного воздействия на окружающую среду.

    Повышение экологической культуры населения, стимулирование приверженности к здоровому образу жизни благодаря массовому использованию качественной и удобной биоразлагаемой упаковки.

Оценки рынка

Рынок биополимеров, изготовленных на основе возобновляемых ресурсов, будет ежегодно расти на 8–10%. Наиболее интенсивно будет развиваться сегмент упаковочных материалов. Уже сейчас объем этого сегмента составляет 90% текущего объема мирового потребления биополимеров (205 млн тонн). Емкость рынка биополимеров в 2020 г. достигнет 4 млрд долларов. Вероятный срок максимального проявления тренда: 2025–2030 гг.

Драйверы и барьеры

    Ужесточение экологических требований к упаковочным материалам, повышение стоимости утилизации традиционной упаковки.

    Сокращение использования неразлагаемой упаковки в связи с необходимостью экономить невозобновляемые ресурсы нефти и газа в развитых странах.

    Недостаточно развитое экологическое воспитание у населения и бизнеса.

    Более высокая стоимость биоразлагаемых полимеров по сравнению с синтетическими.

Структурный анализ

Биополимерные материалы на рынке производства биопластика: 2010–2011 (%).

В рубрике «Открытое чтение» мы публикуем отрывки из книг в том виде, в котором их предоставляют издатели. Незначительные сокращения обозначены многоточием в квадратных скобках. Мнение автора может не совпадать с мнением редакции.

Поделитесь с друзьями или сохраните для себя:

Загрузка...